Un acostament a les quàrtiques projectives planes

dc.contributor.advisorNaranjo del Val, Juan Carlos
dc.contributor.authorMorata Martínez, Imanol
dc.date.accessioned2012-09-21T10:58:19Z
dc.date.available2012-09-21T10:58:19Z
dc.date.issued2012-01-26
dc.descriptionTreballs Finals de Grau de Matemàtiques de la Facultat de Matemàtiques de la Universitat de Barcelona, Any: 2012 , Director: Juan Carlos Naranjo del Valcat
dc.description.abstractThis work, which consists in two separate parts, will attempt to build an equation for a non-singular plane projective quartic over an algebraically closed eld, namely C. In the course of this trail, algebric and geometric theory will be introduced and discussed here, taking special care in subjects such as Bézout's theorem, the divisor language, Riemann-Roch's theorem and some matters about symplectic algebra. This path will lead us to Steiner-Hesse's theorem which provides a way to write an equation for a non-singular quartic. Finally, we will use those methods in order to attempt the development of an equation for the Klein quartic. An appendix lies at the end of the work talking about a pair of questions which can be investigated parting from the subjects in the main text, and a brief historical background for the things shown on it.eng
dc.format.extent75 p.
dc.format.mimetypeapplication/pdf-
dc.identifier.urihttps://hdl.handle.net/2445/31703
dc.language.isocateng
dc.rightscc-by-nc-nd (c) Morata, 2012
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesseng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationCorbes algebraiquescat
dc.subject.classificationGeometria projectivacat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherAlgebraic curveseng
dc.subject.otherProjective geometryeng
dc.subject.otherBachelor's theseseng
dc.titleUn acostament a les quàrtiques projectives planescat
dc.typeinfo:eu-repo/semantics/bachelorThesiseng

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
Morata_Un_acostament_a_les_quartiques_projectives_planesv2.pdf
Mida:
581.92 KB
Format:
Adobe Portable Document Format