Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Jan Bruno Lewenstein Sanpera, 2024
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/211465

Calderón-Zygmund estimates for the Laplacian

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

[en] Regularity theory for Partial Differential Equations might be one of the most important topics in the field. With many applications, some of them in areas further away like Mathematical Physics, learning the basic regularity estimates for the Laplacian seems a crucial step into understanding more general results and solutions. This project intends to provide the tools and proofs of the CalderónZygmund estimates for the Laplacian equation $\Delta u=f$, with $f \in L^p$. We will separate in three distinct cases: $p=2, p \in(2, \infty)$ and $p=\infty$, each with a different proof. Further, using blow-up techniques introduced in [1] a new proof for the limiting case $p=\infty$ will be provided. Finally, we intend to remark a few points that could potentially lead towards a blow-up proof for the general $L^p$ case.

Descripció

Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2024, Director: Xavier Ros

Citació

Citació

JAN BRUNO, Lewenstein sanpera. Calderón-Zygmund estimates for the Laplacian. [consulta: 25 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/211465]

Exportar metadades

JSON - METS

Compartir registre