Calderón-Zygmund estimates for the Laplacian

dc.contributor.advisorRos, Xavier
dc.contributor.authorJan Bruno, Lewenstein Sanpera
dc.date.accessioned2024-05-17T08:35:58Z
dc.date.available2024-05-17T08:35:58Z
dc.date.issued2024-01-17
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2024, Director: Xavier Rosca
dc.description.abstract[en] Regularity theory for Partial Differential Equations might be one of the most important topics in the field. With many applications, some of them in areas further away like Mathematical Physics, learning the basic regularity estimates for the Laplacian seems a crucial step into understanding more general results and solutions. This project intends to provide the tools and proofs of the CalderónZygmund estimates for the Laplacian equation $\Delta u=f$, with $f \in L^p$. We will separate in three distinct cases: $p=2, p \in(2, \infty)$ and $p=\infty$, each with a different proof. Further, using blow-up techniques introduced in [1] a new proof for the limiting case $p=\infty$ will be provided. Finally, we intend to remark a few points that could potentially lead towards a blow-up proof for the general $L^p$ case.ca
dc.format.extent43 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/211465
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Jan Bruno Lewenstein Sanpera, 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationEquacions en derivades parcialsca
dc.subject.classificationEquacions diferencials el·líptiques
dc.subject.classificationEspais funcionalsca
dc.subject.classificationTreballs de fi de grauca
dc.subject.otherPartial differential equationsen
dc.subject.otherElliptic differential equations
dc.subject.otherFunction spacesen
dc.subject.otherBachelor's thesesen
dc.titleCalderón-Zygmund estimates for the Laplacianca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
tfg_lewenstein_sanpera_jan.pdf
Mida:
478.43 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria