Arakelian's theorem
| dc.contributor.advisor | Massaneda Clares, Francesc Xavier | |
| dc.contributor.author | Barber Florit, Laura | |
| dc.date.accessioned | 2019-05-14T09:02:18Z | |
| dc.date.available | 2019-05-14T09:02:18Z | |
| dc.date.issued | 2019-01-17 | |
| dc.description | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Francesc Xavier Massaneda Clares | ca |
| dc.description.abstract | [en] The approximation by rational functions and polynomials is one of the topics that has been studied for a long time. The aim of this text is to study the uniform approximation by rational functions and polynomials based on three theorems: Runge, Mergelyan, and Arakelian. The first one concerns uniform approximation by rational functions on compact sets. Mergelyan’s theorem is a generalization of Runge’s theorem. Finally, Arakelian’s theorem deals with uniform approximation by entire functions on possibly unbounded closed sets. We provide the proofs of these theorems and furthermore, we state connexions between them. | ca |
| dc.format.extent | 43 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.uri | https://hdl.handle.net/2445/133128 | |
| dc.language.iso | eng | ca |
| dc.rights | cc-by-nc-nd (c) Laura Barber Florit, 2019 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
| dc.source | Treballs Finals de Grau (TFG) - Matemàtiques | |
| dc.subject.classification | Teoria de l'aproximació | ca |
| dc.subject.classification | Treballs de fi de grau | |
| dc.subject.classification | Funcions de variables complexes | ca |
| dc.subject.classification | Polinomis | ca |
| dc.subject.other | Approximation theory | en |
| dc.subject.other | Bachelor's theses | |
| dc.subject.other | Functions of complex variables | en |
| dc.subject.other | Polynomials | en |
| dc.title | Arakelian's theorem | ca |
| dc.type | info:eu-repo/semantics/bachelorThesis | ca |
Fitxers
Paquet original
1 - 1 de 1
Carregant...
- Nom:
- memoria.pdf
- Mida:
- 1.37 MB
- Format:
- Adobe Portable Document Format
- Descripció:
- Memòria