Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Caballero Díaz, Francisco F. et al., 2017
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/123375

Advanced analytical methodologies for measuring healthy ageing and its determinants, using factor analysis and machine learning techniques: the ATHLOS project

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

A most challenging task for scientists that are involved in the study of ageing is the development of a measure to quantify health status across populations and over time. In the present study, a Bayesian multilevel Item Response Theory approach is used to create a health score that can be compared across different waves in a longitudinal study, using anchor items and items that vary across waves. The same approach can be applied to compare health scores across different longitudinal studies, using items that vary across studies. Data from the English Longitudinal Study of Ageing (ELSA) are employed. Mixed-effects multilevel regression and Machine Learning methods were used to identify relationships between socio-demographics and the health score created. The metric of health was created for 17,886 subjects (54.6% of women) participating in at least one of the first six ELSA waves and correlated well with already known conditions that affect health. Future efforts will implement this approach in a harmonised data set comprising several longitudinal studies of ageing. This will enable valid comparisons between clinical and community dwelling populations and help to generate norms that could be useful in day-to-day clinical practice.

Citació

Citació

CABALLERO DÍAZ, Francisco f., SOULIS, Georges, ENGCHUAN, Worrawat, SÁNCHEZ NIUBÒ, Albert, ARNDT, Holger, AYUSO MATEOS, José luis, HARO ABAD, Josep maria, CHATTERJI, Somnath, PANAGIOTAKOS, Demosthenes b.. Advanced analytical methodologies for measuring healthy ageing and its determinants, using factor analysis and machine learning techniques: the ATHLOS project. _Scientific Reports_. 2017. Vol. 7, núm. 43955. [consulta: 28 de gener de 2026]. ISSN: 2045-2322. [Disponible a: https://hdl.handle.net/2445/123375]

Exportar metadades

JSON - METS

Compartir registre