Advanced analytical methodologies for measuring healthy ageing and its determinants, using factor analysis and machine learning techniques: the ATHLOS project

dc.contributor.authorCaballero Díaz, Francisco F.
dc.contributor.authorSoulis, Georges
dc.contributor.authorEngchuan, Worrawat
dc.contributor.authorSánchez Niubò, Albert
dc.contributor.authorArndt, Holger
dc.contributor.authorAyuso Mateos, José Luis
dc.contributor.authorHaro Abad, Josep Maria
dc.contributor.authorChatterji, Somnath
dc.contributor.authorPanagiotakos, Demosthenes B.
dc.date.accessioned2018-07-05T10:41:03Z
dc.date.available2018-07-05T10:41:03Z
dc.date.issued2017-03-10
dc.date.updated2018-07-05T10:41:03Z
dc.description.abstractA most challenging task for scientists that are involved in the study of ageing is the development of a measure to quantify health status across populations and over time. In the present study, a Bayesian multilevel Item Response Theory approach is used to create a health score that can be compared across different waves in a longitudinal study, using anchor items and items that vary across waves. The same approach can be applied to compare health scores across different longitudinal studies, using items that vary across studies. Data from the English Longitudinal Study of Ageing (ELSA) are employed. Mixed-effects multilevel regression and Machine Learning methods were used to identify relationships between socio-demographics and the health score created. The metric of health was created for 17,886 subjects (54.6% of women) participating in at least one of the first six ELSA waves and correlated well with already known conditions that affect health. Future efforts will implement this approach in a harmonised data set comprising several longitudinal studies of ageing. This will enable valid comparisons between clinical and community dwelling populations and help to generate norms that could be useful in day-to-day clinical practice.
dc.format.extent13 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec678520
dc.identifier.issn2045-2322
dc.identifier.pmid28281663
dc.identifier.urihttps://hdl.handle.net/2445/123375
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/srep43955
dc.relation.ispartofScientific Reports, 2017, vol. 7, p. 43955
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/635316/EU//ATHLOS
dc.relation.urihttps://doi.org/10.1038/srep43955
dc.rightscc-by (c) Caballero Díaz, Francisco F. et al., 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Medicina)
dc.subject.classificationEnvelliment de la població
dc.subject.classificationEstadística
dc.subject.classificationEstudi de casos
dc.subject.classificationSalut pública
dc.subject.classificationQualitat de vida
dc.subject.otherPopulation aging
dc.subject.otherStatistics
dc.subject.otherCase studies
dc.subject.otherPublic health
dc.subject.otherQuality of life
dc.titleAdvanced analytical methodologies for measuring healthy ageing and its determinants, using factor analysis and machine learning techniques: the ATHLOS project
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
678520.pdf
Mida:
859.91 KB
Format:
Adobe Portable Document Format