El CRAI romandrà tancat del 24 de desembre de 2025 al 6 de gener de 2026. La validació de documents es reprendrà a partir del 7 de gener de 2026.
El CRAI permanecerá cerrado del 24 de diciembre de 2025 al 6 de enero de 2026. La validación de documentos se reanudará a partir del 7 de enero de 2026.
From 2025-12-24 to 2026-01-06, the CRAI remain closed and the documents will be validated from 2026-01-07.
 
Carregant...
Miniatura

Tipus de document

Article

Versió

Versió enviada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/152079

An extension of Itô's formula for anticipating processes

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

In this paper we introduce a class of square integrable processes, denoted by LF, defined in the canonical probability space of the Brownian motion, which contains both the adapted processes and the processes in the Sobolev space L2,2. The processes in the class LF satisfy that for any time t, they are twice weakly differentiable in the sense of the stochastic calculus of variations in points (r, s) such that r ∨ s ≥ t. On the other hand, processes belonging to the class LF are Skorohod integrable, and the indefinite Skorohod integral has properties similar to those of the Ito integral. In particular we prove a change-of-variable formula that extends the classical Itô formula. Those results are generalization of similar properties proved by Nualart and Pardoux(7) for processes in L2,2.

Descripció

Preprint enviat per a la seva publicació en una revista científica: Journal of Theoretical Probability, (1998), volume 11, pages 493–514. [http://doi.org/10.1023/A:1022692024364]

Citació

Citació

ALÒS, Elisa, NUALART, David. An extension of Itô's formula for anticipating processes. [consulta: 1 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/152079]

Exportar metadades

JSON - METS

Compartir registre