An extension of Itô's formula for anticipating processes

dc.contributor.authorAlòs, Elisa
dc.contributor.authorNualart, David, 1951-
dc.date.accessioned2020-03-05T14:29:17Z
dc.date.available2020-03-05T14:29:17Z
dc.date.issued1996
dc.descriptionPreprint enviat per a la seva publicació en una revista científica: Journal of Theoretical Probability, (1998), volume 11, pages 493–514. [http://doi.org/10.1023/A:1022692024364]ca
dc.description.abstractIn this paper we introduce a class of square integrable processes, denoted by LF, defined in the canonical probability space of the Brownian motion, which contains both the adapted processes and the processes in the Sobolev space L2,2. The processes in the class LF satisfy that for any time t, they are twice weakly differentiable in the sense of the stochastic calculus of variations in points (r, s) such that r ∨ s ≥ t. On the other hand, processes belonging to the class LF are Skorohod integrable, and the indefinite Skorohod integral has properties similar to those of the Ito integral. In particular we prove a change-of-variable formula that extends the classical Itô formula. Those results are generalization of similar properties proved by Nualart and Pardoux(7) for processes in L2,2.ca
dc.format.extent23 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/152079
dc.language.isoengca
dc.publisherUniversitat de Barcelonaca
dc.relation.isformatofReproducció digital del document original en paper [CRAI Biblioteca de Matemàtiques i Informàtica - Dipòsit Departament CAIXA 37.10]
dc.relation.ispartofseriesMathematics Preprint Series; 215ca
dc.rights(c) Elisa Alòs et al., 1996
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.sourcePreprints de Matemàtiques - Mathematics Preprint Series
dc.subject.classificationIntegrals estocàstiques
dc.subject.classificationCàlcul de Malliavin
dc.subject.otherUniversitat de Barcelona. Institut de Matemàtica
dc.titleAn extension of Itô's formula for anticipating processesca
dc.typeinfo:eu-repo/semantics/articleca
dc.typeinfo:eu-repo/semantics/submittedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
MPS_N215.pdf
Mida:
1.05 MB
Format:
Adobe Portable Document Format
Descripció: