Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió acceptadaData de publicació
Tots els drets reservats
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/178934
An intelligent framework for end‐to‐end rockfall detection
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
Rockfall detection is a crucial procedure in the field ofgeology, which helps to reduce the associated risks.Currently, geologists identify rockfall events almostmanually utilizing point cloud and imagery data ob-tained from different caption devices such as TerrestrialLaser Scanner (TLS) or digital cameras. Multitemporalcomparison of the point clouds obtained with thesetechniques requires a tedious visual inspection to iden-tify rockfall events which implies inaccuracies that de-pend on several factors such as human expertize and thesensibility of the sensors. This paper addresses this issueand provides an intelligent framework for rockfall eventdetection for any individual working in the intersectionof the geology domain and decision support systems.The development of such an analysis framework pre-sents major research challenges and justifies exhaustiveexperimental analysis. In particular, we propose an in-telligent system that utilizes multiple machine learningalgorithms to detect rockfall clusters of point cloud data.Due to the extremely imbalanced nature of the problem,aplethoraofstateoftheart resampling techniques ac-companied by multiple models and feature selectionprocedures are being investigated. Various machine learning pipeline combinations have been examinedand benchmarked applying wellknown metrics to beincorporated into our system. Specifically, we developedmachine learning techniques and applied them to ana-lyze point cloud data extracted from TLS in two distinctcase studies, involving different geological contexts: thebasaltic cliff of Castellfollit de la Roca and the con-glomerate Montserrat Massif, both located in Spain. Ourexperimental results indicate that some of the abovementioned machine learning pipelines can be utilized todetect rockfall incidents on mountain walls, with ex-perimentally validated accuracy.
Matèries
Matèries (anglès)
Citació
Citació
ZOUMPEKAS, Thanasis, PUIG PUIG, Anna, SALAMÓ LLORENTE, Maria, GARCÍA SELLÉS, David, BLANCO NÚÑEZ, Laura, GUINAU SELLÉS, Marta. An intelligent framework for end‐to‐end rockfall detection. _International Journal of Intelligent Systems_. 2021. Vol. 1-32. [consulta: 21 de gener de 2026]. ISSN: 0884-8173. [Disponible a: https://hdl.handle.net/2445/178934]