Carregant...
Tipus de document
Treball de fi de grauData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/185534
Topology preservation under dimensionality reduction during neural manifold discovery
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
[en] One of the main challenges that neuroscience faces nowadays is to understand how the brain represents different stimuli. This involves dealing with large amounts of data, which are usually high-dimensional and have to be processed to unveil how they are related with the associated cognitive processes. This work describes methods to preserve the topology of recorded data when their dimensionality is reduced, using predictions
from neural coding theory. Relevant dimensionality reduction techniques are exposed, along with a couple of examples where persistent homology is crucial to discriminate the resulting neural manifold from being a circle or a torus. It is impossible to infer this from dimensionality reduction alone. Thus, to combine both techniques is essential for the manifold’s parameterization and the subsequent variable decoding to be successful.
Descripció
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Carles Casacuberta
Matèries (anglès)
Citació
Col·leccions
Citació
MARTÍNEZ MARÍN, Marian. Topology preservation under dimensionality reduction during neural manifold discovery. [consulta: 31 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/185534]