Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Marian Martı́nez Marı́n, 2021
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/185534

Topology preservation under dimensionality reduction during neural manifold discovery

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

[en] One of the main challenges that neuroscience faces nowadays is to understand how the brain represents different stimuli. This involves dealing with large amounts of data, which are usually high-dimensional and have to be processed to unveil how they are related with the associated cognitive processes. This work describes methods to preserve the topology of recorded data when their dimensionality is reduced, using predictions from neural coding theory. Relevant dimensionality reduction techniques are exposed, along with a couple of examples where persistent homology is crucial to discriminate the resulting neural manifold from being a circle or a torus. It is impossible to infer this from dimensionality reduction alone. Thus, to combine both techniques is essential for the manifold’s parameterization and the subsequent variable decoding to be successful.

Descripció

Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Carles Casacuberta

Citació

Citació

MARTÍNEZ MARÍN, Marian. Topology preservation under dimensionality reduction during neural manifold discovery. [consulta: 31 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/185534]

Exportar metadades

JSON - METS

Compartir registre