Topology preservation under dimensionality reduction during neural manifold discovery

dc.contributor.advisorCasacuberta, Carles
dc.contributor.authorMartı́nez Marı́n, Marian
dc.date.accessioned2022-05-11T10:29:25Z
dc.date.available2022-05-11T10:29:25Z
dc.date.issued2021-06-20
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Carles Casacubertaca
dc.description.abstract[en] One of the main challenges that neuroscience faces nowadays is to understand how the brain represents different stimuli. This involves dealing with large amounts of data, which are usually high-dimensional and have to be processed to unveil how they are related with the associated cognitive processes. This work describes methods to preserve the topology of recorded data when their dimensionality is reduced, using predictions from neural coding theory. Relevant dimensionality reduction techniques are exposed, along with a couple of examples where persistent homology is crucial to discriminate the resulting neural manifold from being a circle or a torus. It is impossible to infer this from dimensionality reduction alone. Thus, to combine both techniques is essential for the manifold’s parameterization and the subsequent variable decoding to be successful.ca
dc.format.extent65 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/185534
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Marian Martı́nez Marı́n, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationHomologiaca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationTopologia algebraicaca
dc.subject.classificationNeuronesca
dc.subject.otherHomologyen
dc.subject.otherBachelor's theses
dc.subject.otherAlgebraic topologyen
dc.subject.otherNeuronsen
dc.titleTopology preservation under dimensionality reduction during neural manifold discoveryca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
tfg_marian_martinez_marin.pdf
Mida:
16.82 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria