Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Vidal-Llana et al., 2022
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/193707

Cross-sectional quantile regression for estimating conditional VaR of returns during periods of high volatility

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Evaluating value at risk (VaR) for a firm's returns during periods of financial turmoil is a challenging task because of the high volatility in the market. We propose estimating conditional VaR and expected shortfall (ES) for a given firm's returns using quantile regression with cross-sectional (CSQR) data about other firms operating in the same market. An evaluation using US market data between 2000 and 2020 shows that our approach has certain advantages over a CAViaR model. Identification of low-risk firms and a reduction in computing times are additional advantages of the new method described.

Citació

Citació

VIDAL-LLANA, Xenxo, GUILLÉN, Montserrat. Cross-sectional quantile regression for estimating conditional VaR of returns during periods of high volatility. _North American Journal of Economics and Finance_. 2022. Vol. 63, núm. 101835. [consulta: 21 de gener de 2026]. ISSN: 1062-9408. [Disponible a: https://hdl.handle.net/2445/193707]

Exportar metadades

JSON - METS

Compartir registre