Cross-sectional quantile regression for estimating conditional VaR of returns during periods of high volatility

dc.contributor.authorVidal-Llana, Xenxo
dc.contributor.authorGuillén, Montserrat
dc.date.accessioned2023-02-16T15:10:29Z
dc.date.available2023-02-16T15:10:29Z
dc.date.issued2022-11-17
dc.date.updated2023-02-16T15:10:29Z
dc.description.abstractEvaluating value at risk (VaR) for a firm's returns during periods of financial turmoil is a challenging task because of the high volatility in the market. We propose estimating conditional VaR and expected shortfall (ES) for a given firm's returns using quantile regression with cross-sectional (CSQR) data about other firms operating in the same market. An evaluation using US market data between 2000 and 2020 shows that our approach has certain advantages over a CAViaR model. Identification of low-risk firms and a reduction in computing times are additional advantages of the new method described.
dc.format.extent9 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec729805
dc.identifier.issn1062-9408
dc.identifier.urihttps://hdl.handle.net/2445/193707
dc.language.isoeng
dc.publisherElsevier
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.najef.2022.101835
dc.relation.ispartofNorth American Journal of Economics and Finance, 2022, vol. 63, p. 101835
dc.relation.urihttps://doi.org/10.1016/j.najef.2022.101835
dc.rightscc-by (c) Vidal-Llana et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Econometria, Estadística i Economia Aplicada)
dc.subject.classificationAvaluació del risc
dc.subject.classificationValor (Economia)
dc.subject.classificationAnàlisi de regressiócat
dc.subject.otherRisk assessment
dc.subject.otherValue (Economics)
dc.subject.otherRegression analysiseng
dc.titleCross-sectional quantile regression for estimating conditional VaR of returns during periods of high volatility
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
729805.pdf
Mida:
1.5 MB
Format:
Adobe Portable Document Format