Carregant...
Tipus de document
Treball de fi de grauData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/188068
Sistemes deductius algebritzables
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
[en] Logics allow the study of reasoning’s validity. Essentially, there are two ways of representing logics, syntactically and semantically. The syntactic presentation builds on the notion of proof, which is defined by a set of inference rules or calculus, stating that a reasoning is correct if a proof of the conclusion can be constructed from the premises. The semantic representation is based on the notions of truth and interpretation, and the idea is that, if the premises are true, so is the conclusion. Semantic representation has also been studied using the logical matrices’ method. The existence of completeness theorems makes it possible to relate syntactic to semantics. Presently work studies the article [Blo89], by Blok and Pigozzi, where it is formally defined to be an algebraizable deductive system. Next, some characterization theorems of these will be proved. It will also be seen that, when a deductive system is algebraizable, it is easier to find a completeness theorem between syntactic calculus and a matrix semantic representation. This paper will conclude by considering some applications, such as the so-called bridge theorems, which relate the branches of logic and algebra.
Descripció
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Joan Gispert Brasó
Matèries (anglès)
Citació
Col·leccions
Citació
ACEVEDO, Lucas uzías. Sistemes deductius algebritzables. [consulta: 15 de febrer de 2026]. [Disponible a: https://hdl.handle.net/2445/188068]