Sistemes deductius algebritzables

dc.contributor.advisorGispert Brasó, Joan
dc.contributor.authorAcevedo, Lucas Uzías
dc.date.accessioned2022-07-26T10:06:33Z
dc.date.available2022-07-26T10:06:33Z
dc.date.issued2022-06-13
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Joan Gispert Brasóca
dc.description.abstract[en] Logics allow the study of reasoning’s validity. Essentially, there are two ways of representing logics, syntactically and semantically. The syntactic presentation builds on the notion of proof, which is defined by a set of inference rules or calculus, stating that a reasoning is correct if a proof of the conclusion can be constructed from the premises. The semantic representation is based on the notions of truth and interpretation, and the idea is that, if the premises are true, so is the conclusion. Semantic representation has also been studied using the logical matrices’ method. The existence of completeness theorems makes it possible to relate syntactic to semantics. Presently work studies the article [Blo89], by Blok and Pigozzi, where it is formally defined to be an algebraizable deductive system. Next, some characterization theorems of these will be proved. It will also be seen that, when a deductive system is algebraizable, it is easier to find a completeness theorem between syntactic calculus and a matrix semantic representation. This paper will conclude by considering some applications, such as the so-called bridge theorems, which relate the branches of logic and algebra.ca
dc.format.extent78 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/188068
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Lucas Uzías Acevedo, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationProposició (Lògica)ca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationLògica algebraicaca
dc.subject.classificationÀlgebra de Booleca
dc.subject.classificationTeoria dels reticlesca
dc.subject.otherProposition (Logic)en
dc.subject.otherBachelor's theses
dc.subject.otherAlgebraic logicen
dc.subject.otherBoolean algebrasen
dc.subject.otherLattice theoryen
dc.titleSistemes deductius algebritzablesca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
tfg_acevedo_lucas_uzias.pdf
Mida:
1.21 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria