Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/96752

Data pre-processing for neural network-based forecasting: does it really matter?

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

This study aims to analyze the effects of data pre-processing on the forecasting performance of neural network models. We use three different Artificial Neural Networks techniques to predict tourist demand: multi-layer perceptron, radial basis function and Elman neural networks. The structure of the networks is based on a multiple-output approach. We use official statistical data of inbound international tourism demand to Catalonia (Spain) and compare the forecasting accuracy of four processing methods for the input vector of the networks: levels, growth rates, seasonally adjusted levels and seasonally adjusted growth rates. When comparing the forecasting accuracy of the different inputs for each visitor market and for different forecasting horizons, we obtain significantly better forecasts with levels than with growth rates. We also find that seasonally adjusted series significantly improve the forecasting performance of the networks, which hints at the significance of deseasonalizing the time series when using neural networks with forecasting purposes. These results reveal that, when using seasonal data, neural networks performance can be significantly improved by working directly with seasonally adjusted levels.

Citació

Citació

CLAVERÍA GONZÁLEZ, Óscar, MONTE MORENO, Enric, TORRA PORRAS, Salvador. Data pre-processing for neural network-based forecasting: does it really matter?. _Technological and Economic Development of Economy_. 2017. Vol. 23, núm. 5, pàgs. 709-725. [consulta: 22 de gener de 2026]. ISSN: 2029-4913. [Disponible a: https://hdl.handle.net/2445/96752]

Exportar metadades

JSON - METS

Compartir registre