Data pre-processing for neural network-based forecasting: does it really matter?

dc.contributor.authorClavería González, Óscar
dc.contributor.authorMonte Moreno, Enric
dc.contributor.authorTorra Porras, Salvador
dc.date.accessioned2016-03-30T11:03:18Z
dc.date.available2017-05-30T22:01:33Z
dc.date.issued2017
dc.date.updated2016-03-30T11:03:24Z
dc.description.abstractThis study aims to analyze the effects of data pre-processing on the forecasting performance of neural network models. We use three different Artificial Neural Networks techniques to predict tourist demand: multi-layer perceptron, radial basis function and Elman neural networks. The structure of the networks is based on a multiple-output approach. We use official statistical data of inbound international tourism demand to Catalonia (Spain) and compare the forecasting accuracy of four processing methods for the input vector of the networks: levels, growth rates, seasonally adjusted levels and seasonally adjusted growth rates. When comparing the forecasting accuracy of the different inputs for each visitor market and for different forecasting horizons, we obtain significantly better forecasts with levels than with growth rates. We also find that seasonally adjusted series significantly improve the forecasting performance of the networks, which hints at the significance of deseasonalizing the time series when using neural networks with forecasting purposes. These results reveal that, when using seasonal data, neural networks performance can be significantly improved by working directly with seasonally adjusted levels.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec644923
dc.identifier.issn2029-4913
dc.identifier.urihttps://hdl.handle.net/2445/96752
dc.language.isoeng
dc.publisherTaylor and Francis
dc.relation.isformatofVersió postprint del document publicat a: http://www.tandfonline.com/doi/abs/10.3846/20294913.2015.1070772
dc.relation.ispartofTechnological and Economic Development of Economy, 2017, vol. 23, núm. 5, p. 709-725
dc.relation.urihttp://dx.doi.org/10.3846/20294913.2015.1070772
dc.rights(c) Vilnius Gediminas Technical University, 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Econometria, Estadística i Economia Aplicada)
dc.subject.classificationPrevisió econòmica
dc.subject.classificationDesenvolupament econòmic
dc.subject.classificationXarxes neuronals (Informàtica)
dc.subject.otherEconomic forecasting
dc.subject.otherEconomic development
dc.subject.otherNeural networks (Computer science)
dc.titleData pre-processing for neural network-based forecasting: does it really matter?
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
644923.pdf
Mida:
123.24 KB
Format:
Adobe Portable Document Format