Lefschetz properties in algebra and geometry

dc.contributor.advisorMiró-Roig, Rosa M. (Rosa Maria)
dc.contributor.authorSalat Moltó, Martí
dc.date.accessioned2017-07-04T09:12:55Z
dc.date.available2017-07-04T09:12:55Z
dc.date.issued2017-01-16
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2017, Director: Rosa Maria Miró-Roigca
dc.description.abstractThe weak and strong Lefschetz properties on graded artinian algebras have been an object of study along the last few decades. Precisely, let be $A$ a graded artinian algebra. We say that $A$ has the Strong Lefschetz property (SLP) if the multiplication by a $d$th power of a general linear form have maximal rank (i.e. $\times L^{d} : A_{i} \rightarrow A_{i+d}$ is injective or surjective for every $i$). We say that $A$ has the Weak Lefschetz property (WLP) if occurs the same with $d = 1$. These properties have connections among different areas such as algebraic geometry, commutative algebra and combinatorics. Sometimes quite surprising, these connections give new approaches and relate problems, a priori, very distant.ca
dc.format.extent50 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/113296
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Martí Salat Moltó, 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationÀlgebra commutativa
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationGeometria algebraicaca
dc.subject.classificationSingularitats (Matemàtica)ca
dc.subject.classificationAnells artiniansca
dc.subject.otherCommutative algebra
dc.subject.otherBachelor's theses
dc.subject.otherAlgebraic geometryen
dc.subject.otherSingularities (Mathematics)en
dc.subject.otherArtin ringsen
dc.titleLefschetz properties in algebra and geometryca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
364.96 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria