Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió publicadaData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/184973
GASVeM: A New Machine Learning Methodology for Multi-SNP Analysis of GWAS Data Based on Genetic Algorithms and Support Vector Machines
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
Genome-wide association studies (GWAS) are observational studies of a large set of genetic variants in an individual's sample in order to find if any of these variants are linked to a particular trait. In the last two decades, GWAS have contributed to several new discoveries in the field of genetics. This research presents a novel methodology to which GWAS can be applied to. It is mainly based on two machine learning methodologies, genetic algorithms and support vector machines. The database employed for the study consisted of information about 370,750 single-nucleotide polymorphisms belonging to 1076 cases of colorectal cancer and 973 controls. Ten pathways with different degrees of relationship with the trait under study were tested. The results obtained showed how the proposed methodology is able to detect relevant pathways for a certain trait: in this case, colorectal cancer. Keywords: machine learning; support vector machines; genetic algorithms; genome-wide association studies; single nucleotide polymorphism; pathways analysis
Matèries (anglès)
Citació
Citació
DIEZ DIAZ, Fidel, SANCHEZ LASHERAS, Fernando, MORENO AGUADO, Víctor, MORATALLA-NAVARRO, Ferran, MOLINA DE LA TORRE, Antonio josé, MARTIN SANCHEZ, Vicente. GASVeM: A New Machine Learning Methodology for Multi-SNP Analysis of GWAS Data Based on Genetic Algorithms and Support Vector Machines. _Mathematics_. 2021. Vol. 9, núm. 6. [consulta: 25 de gener de 2026]. ISSN: 2227-7390. [Disponible a: https://hdl.handle.net/2445/184973]