GASVeM: A New Machine Learning Methodology for Multi-SNP Analysis of GWAS Data Based on Genetic Algorithms and Support Vector Machines

dc.contributor.authorDiez Diaz, Fidel
dc.contributor.authorSanchez Lasheras, Fernando
dc.contributor.authorMoreno Aguado, Víctor
dc.contributor.authorMoratalla-Navarro, Ferran
dc.contributor.authorMolina de la Torre, Antonio José
dc.contributor.authorMartin Sanchez, Vicente
dc.date.accessioned2022-04-14T08:58:40Z
dc.date.available2022-04-14T08:58:40Z
dc.date.issued2021-03-18
dc.date.updated2022-04-14T08:58:40Z
dc.description.abstractGenome-wide association studies (GWAS) are observational studies of a large set of genetic variants in an individual's sample in order to find if any of these variants are linked to a particular trait. In the last two decades, GWAS have contributed to several new discoveries in the field of genetics. This research presents a novel methodology to which GWAS can be applied to. It is mainly based on two machine learning methodologies, genetic algorithms and support vector machines. The database employed for the study consisted of information about 370,750 single-nucleotide polymorphisms belonging to 1076 cases of colorectal cancer and 973 controls. Ten pathways with different degrees of relationship with the trait under study were tested. The results obtained showed how the proposed methodology is able to detect relevant pathways for a certain trait: in this case, colorectal cancer. Keywords: machine learning; support vector machines; genetic algorithms; genome-wide association studies; single nucleotide polymorphism; pathways analysis
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec714262
dc.identifier.issn2227-7390
dc.identifier.urihttps://hdl.handle.net/2445/184973
dc.language.isoeng
dc.publisherMDPI
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/math9060654
dc.relation.ispartofMathematics, 2021, vol. 9, num. 6
dc.relation.urihttps://doi.org/10.3390/math9060654
dc.rightscc-by (c) Diez Diaz, Fidel et al., 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Ciències Clíniques)
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationAlgorismes genètics
dc.subject.classificationGenoma humà
dc.subject.otherMachine learning
dc.subject.otherGenetic algorithms
dc.subject.otherHuman genome
dc.titleGASVeM: A New Machine Learning Methodology for Multi-SNP Analysis of GWAS Data Based on Genetic Algorithms and Support Vector Machines
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
714262.pdf
Mida:
4.16 MB
Format:
Adobe Portable Document Format