Lògica intuïcionista. Teorema de Glivenko

dc.contributor.advisorGispert Brasó, Joan
dc.contributor.authorCanal Ferrer, Genı́s
dc.date.accessioned2022-04-07T10:31:10Z
dc.date.available2022-04-07T10:31:10Z
dc.date.issued2021-06-20
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Joan Gispert Brasóca
dc.description.abstract[en] Glivenko’s theorem says that the fact that a proposition is provable in classical logic is equivalent to the double negation of this proposition being provable in intuitionistic logic. We present the intuitionistic logic and introduce two syntactic calculus: the Hilbert calculus and the natural deduction calculus. We give as well two semantics for the intuitionistic logic. A relational one, based on Kripke models and an algebraic one, based on Heyting algebras. To conclude we give three different proofs of Glivenko’s theorem. A syntactic one, a semantic one based on Kripke models and a semantic one based on Heyting algebras.ca
dc.format.extent50 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/184727
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Genı́s Canal Ferrer, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationLògica matemàticaca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationMatemàtica intuïcionistaca
dc.subject.classificationLògica algebraicaca
dc.subject.otherMathematical logicen
dc.subject.otherBachelor's theses
dc.subject.otherIntuitionistic mathematicsen
dc.subject.otherAlgebraic logicen
dc.titleLògica intuïcionista. Teorema de Glivenkoca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
tfg_genis_canal_ferrer.pdf
Mida:
568.57 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria