La paradoja de Stein

dc.contributor.advisorJorba i Monte, Àngel
dc.contributor.authorCasanovas Pato, Clàudia
dc.date.accessioned2022-04-08T09:51:47Z
dc.date.available2022-04-08T09:51:47Z
dc.date.issued2021-06-20
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Àngel Jorba i Monteca
dc.description.abstract[en] The (population) mean of a $p$-dimensional multivariate normal vector is plainly estimated by the empirical mean which, additionally, is minimax, ML, UMV and least squares BLUE. One would fancy it is also best as to risk. Nonetheless, Stein (1956) proved it is inadmissible for $p>2$, showing alternative, better candidates. This is Stein's paradox, origin of this memoir. We begin with a brief introduction to place Stein's result in its proper historical context. Then, after reviewing some basic Statistics concepts we present Stein's result, accompanied by illustrative simulations. Finally we survey several approaches to understanding the paradox.ca
dc.format.extent48 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/184858
dc.language.isospaca
dc.rightscc-by-nc-nd (c) Clàudia Casanovas Pato, 2021
dc.rightscodi: GPL (c) Clàudia Casanovas Pato, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationAnàlisi multivariableca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationTeoria de l'estimacióca
dc.subject.classificationEstadística matemàticaca
dc.subject.otherMultivariate analysisen
dc.subject.otherBachelor's theses
dc.subject.otherEstimation theoryen
dc.subject.otherMathematical statisticsen
dc.titleLa paradoja de Steinca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 3 de 3
Carregant...
Miniatura
Nom:
tfg_claudia_casanovas_pato.pdf
Mida:
915.86 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria
Carregant...
Miniatura
Nom:
codi_font.zip
Mida:
238.81 KB
Format:
ZIP file
Descripció:
Codi font
Carregant...
Miniatura
Nom:
Referencias_extras.pdf
Mida:
72.79 KB
Format:
Adobe Portable Document Format
Descripció:
Referències extra