The generalised Gauss-Bonnet-Chern theorem as an instance in the theory of characteristic classes

dc.contributor.advisorMundet i Riera, Ignasi
dc.contributor.authorMaravall López, Javier
dc.date.accessioned2022-05-10T06:52:58Z
dc.date.available2022-05-10T06:52:58Z
dc.date.issued2021-06-20
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Ignasi Mundet i Rieraca
dc.description.abstract[en] The Gauss-Bonnet theorem is one of the earliest classical results in differential geometry. It provides a link between the topology and the geometry of a smooth surface (that is, a smooth 2-manifold). A well-known, highly non-trivial generalisation of this to arbitrary (finite) dimension exists, which was first proven intrinsically (in other words, without recourse to the existence of an embedding of the manifold into an Euclidean space) by Shiing-Shen Chern in 1944. The aim of this work is to provide a full proof of a slightly more general result, which is valid for arbitrary vector bundles over a differential manifold, that gives as a direct corollary the Gauss-Bonnet-Chern theorem when considering the tangent bundle.ca
dc.format.extent80 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/185428
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Javier Maravall López, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationFormes diferencialsca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationGeometria diferencialca
dc.subject.classificationVarietats diferenciablesca
dc.subject.otherDifferential formsen
dc.subject.otherBachelor's theses
dc.subject.otherDifferential geometryen
dc.subject.otherDifferentiable manifoldsen
dc.titleThe generalised Gauss-Bonnet-Chern theorem as an instance in the theory of characteristic classesca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
tfg_javier_maravall_lopez.pdf
Mida:
1.15 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria