Convergence and divergence of Fourier series

dc.contributor.advisorCarro Rossell, María Jesús
dc.contributor.authorGarcía Fernández, Miguel
dc.date.accessioned2018-05-24T08:39:20Z
dc.date.available2018-05-24T08:39:20Z
dc.date.issued2018-01-19
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: María Jesús Carro Rossellca
dc.description.abstract[en] In this project we study the convergence of Fourier series. Specifically, we first give some positive results about pointwise and uniform convergence, and then we prove two essential negative results: there exists a continuous function whose Fourier series diverges at some point and an integrable function whose Fourier series diverges almost at every point. In the case of divergence, we show that one can use other summability methods in order to represent the function as a trigonometric series.ca
dc.format.extent75 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/122536
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Miguel García Fernández, 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationSèries de Fourierca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationConvergència (Matemàtica)ca
dc.subject.classificationSumabilitatca
dc.subject.otherFourier seriesen
dc.subject.otherBachelor's theses
dc.subject.otherConvergenceen
dc.subject.otherSumabilitaten
dc.titleConvergence and divergence of Fourier seriesca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
381.11 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria