El CRAI romandrà tancat del 24 de desembre de 2025 al 6 de gener de 2026. La validació de documents es reprendrà a partir del 7 de gener de 2026.
El CRAI permanecerá cerrado del 24 de diciembre de 2025 al 6 de enero de 2026. La validación de documentos se reanudará a partir del 7 de enero de 2026.
From 2025-12-24 to 2026-01-06, the CRAI remain closed and the documents will be validated from 2026-01-07.
 
Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c)  Bellingeri, M. et al., 2025
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/223523

The recipe similarity network: a new algorithm to extract relevant information from cookbooks.

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

This study integrates network science and intersection graph theory to analyse the structural properties of recipe networks in Catalan cuisine. Using three distinct cookbooks, two traditional and one haute cuisine, we construct the recipe similarity networks by linking recipes based on shared ingredients, with link weights reflecting ingredient similarity. We introduce a new, ad hoc, similarity measure that overcomes some limitations of traditional similarity metrics. We explore how different methodological approaches, such as the substitution of recipes/ingredients with their composing ingredients and link weight normalisation, influence network structure and node centrality. Our analysis reveals that recipe similarity networks are highly interconnected but show structural differences across cuisines, particularly in haute cuisine, which features more specialised recipes. Node centrality metrics identify key recipes that define culinary traditions, such as “Allioli” in traditional Catalan cuisine and “Becada con brioche de su salmis” in haute cuisine. We also develop a community detection algorithm based on link removal and clique identification, which uncovers tightly-knit recipe groups. This study advances the field of computational gastronomy by providing a methodological foundation that can be integrated with artificial intelligence techniques to support recipe personalisation, food recommendations, and gastronomic innovation.

Citació

Citació

BELLINGERI, Michele, BIDON-CHANAL BADIA, Axel, VILA RIGAT, Marta, ALFIERI, Roberto, TURCHETTO, Massimiliano, CASSI, Davide. The recipe similarity network: a new algorithm to extract relevant information from cookbooks.. _Scientific Reports_. 2025. Vol. 15. [consulta: 8 de gener de 2026]. ISSN: 2045-2322. [Disponible a: https://hdl.handle.net/2445/223523]

Exportar metadades

JSON - METS

Compartir registre