The recipe similarity network: a new algorithm to extract relevant information from cookbooks.

dc.contributor.authorBellingeri, Michele
dc.contributor.authorBidon-Chanal Badia, Axel
dc.contributor.authorVila Rigat, Marta
dc.contributor.authorAlfieri, Roberto
dc.contributor.authorTurchetto, Massimiliano
dc.contributor.authorCassi, Davide
dc.date.accessioned2025-10-06T12:24:17Z
dc.date.available2025-10-06T12:24:17Z
dc.date.issued2025-08-21
dc.date.updated2025-10-06T12:24:17Z
dc.description.abstractThis study integrates network science and intersection graph theory to analyse the structural properties of recipe networks in Catalan cuisine. Using three distinct cookbooks, two traditional and one haute cuisine, we construct the recipe similarity networks by linking recipes based on shared ingredients, with link weights reflecting ingredient similarity. We introduce a new, ad hoc, similarity measure that overcomes some limitations of traditional similarity metrics. We explore how different methodological approaches, such as the substitution of recipes/ingredients with their composing ingredients and link weight normalisation, influence network structure and node centrality. Our analysis reveals that recipe similarity networks are highly interconnected but show structural differences across cuisines, particularly in haute cuisine, which features more specialised recipes. Node centrality metrics identify key recipes that define culinary traditions, such as “Allioli” in traditional Catalan cuisine and “Becada con brioche de su salmis” in haute cuisine. We also develop a community detection algorithm based on link removal and clique identification, which uncovers tightly-knit recipe groups. This study advances the field of computational gastronomy by providing a methodological foundation that can be integrated with artificial intelligence techniques to support recipe personalisation, food recommendations, and gastronomic innovation.
dc.format.extent28 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec760913
dc.identifier.issn2045-2322
dc.identifier.urihttps://hdl.handle.net/2445/223523
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.isformatofReproducció del document publicat a: https://doi.org/https://doi.org/10.1038/s41598-025-17189-6
dc.relation.ispartofScientific Reports, 2025, num.15
dc.relation.urihttps://doi.org/https://doi.org/10.1038/s41598-025-17189-6
dc.rightscc-by (c) Bellingeri, M. et al., 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Nutrició, Ciències de l'Alimentació i Gastronomia)
dc.subject.classificationTeoria de grafs
dc.subject.classificationComputació en núvol
dc.subject.classificationCuina catalana
dc.subject.classificationGastronomia
dc.subject.otherGraph theory
dc.subject.otherCloud computing
dc.subject.otherCatalan cooking
dc.subject.otherGastronomy
dc.titleThe recipe similarity network: a new algorithm to extract relevant information from cookbooks.
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
901258.pdf
Mida:
4.46 MB
Format:
Adobe Portable Document Format

Paquet de llicències

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
license.txt
Mida:
1.71 KB
Format:
Item-specific license agreed upon to submission
Descripció: