Effects of removing the trend and the seasonal component on the forecasting performance of artificial neural network techniques

dc.contributor.authorClavería González, Óscar
dc.contributor.authorMonte Moreno, Enric
dc.contributor.authorTorra Porras, Salvador
dc.date.accessioned2015-01-15T11:08:22Z
dc.date.available2015-01-15T11:08:22Z
dc.date.issued2015
dc.date.updated2015-01-15T11:08:23Z
dc.description.abstractThis study aims to analyze the effects of data pre-processing on the performance of forecasting based on neural network models. We use three different Artificial Neural Networks techniques to forecast tourist demand: a multi-layer perceptron, a radial basis function and an Elman neural network. The structure of the networks is based on a multiple-input multiple-output setting (i.e. all countries are forecasted simultaneously). We use official statistical data of inbound international tourism demand to Catalonia (Spain) and compare the forecasting accuracy of four processing methods for the input vector of the networks: levels, growth rates, seasonally adjusted levels and seasonally adjusted growth rates. When comparing the forecasting accuracy of the different inputs for each visitor market and for different forecasting horizons, we obtain significantly better forecasts with levels than with growth rates. We also find that seasonally adjusted series significantly improve the forecasting performance of the networks, which hints at the significance of deseasonalizing the time series when using neural networks with forecasting purposes. These results reveal that, when using seasonal data, neural networks performance can be significantly improved by working directly with seasonally adjusted levels.
dc.format.extent19 p.
dc.format.mimetypeapplication/pdf
dc.identifier.issn2014-1254
dc.identifier.urihttps://hdl.handle.net/2445/61328
dc.language.isoeng
dc.publisherUniversitat de Barcelona. Institut de Recerca en Economia Aplicada Regional i Pública
dc.relation.isformatofReproducció del document publicat a: http://www.ub.edu/irea/working_papers/2015/201503.pdf
dc.relation.ispartofIREA – Working Papers, 2015, IR15/03
dc.relation.ispartofAQR – Working Papers, 2015, AQR15/03
dc.relation.ispartofseries[WP E-AQR15/03]
dc.relation.ispartofseries[WP E-IR15/03]
dc.rightscc-by-nc-nd, (c) Clavería et al., 2015
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/
dc.sourceDocuments de treball (Institut de Recerca en Economia Aplicada Regional i Pública (IREA))
dc.subject.classificationPolitics of tourism
dc.subject.classificationMIMO systems
dc.subject.classificationData transmission systems
dc.subject.classificationEconomic development
dc.subject.otherPolítica turística
dc.subject.otherXarxes neuronals (Informàtica)
dc.subject.otherSistemes MIMO
dc.subject.otherTransmissió de dades
dc.subject.otherDesenvolupament econòmic
dc.titleEffects of removing the trend and the seasonal component on the forecasting performance of artificial neural network techniques
dc.typeinfo:eu-repo/semantics/workingPaper

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
IR15-003_Claveria-Monte.pdf
Mida:
470.7 KB
Format:
Adobe Portable Document Format