Natural and Orthogonal Interaction framework for modeling gene-environment interactions with application to lung cancer

dc.contributor.authorMa, Jianzhong
dc.contributor.authorXiao, Feifei
dc.contributor.authorXiong, Momiao
dc.contributor.authorAndrew, Angeline S.
dc.contributor.authorBrenner, Hermann
dc.contributor.authorDuell, Eric J.
dc.contributor.authorHaugen, Aage
dc.contributor.authorHoggart, Clive
dc.contributor.authorHung, Rayjean J.
dc.contributor.authorLazarus, Philip
dc.contributor.authorLiu, Changlu
dc.contributor.authorMatsuo, Keitaro
dc.contributor.authorMayordomo, Jose Ignacio
dc.contributor.authorSchwartz, Ann G.
dc.contributor.authorStaratschek-Jox, Andrea
dc.contributor.authorWichmann, H.-Erich
dc.contributor.authorYang, Ping
dc.contributor.authorAmos, Christopher I.
dc.date.accessioned2018-11-29T09:27:45Z
dc.date.available2018-11-29T09:27:45Z
dc.date.issued2012
dc.date.updated2018-07-24T12:57:23Z
dc.description.abstractObjectives: We aimed at extending the Natural and Orthogonal Interaction (NOIA) framework, developed for modeling gene-gene interactions in the analysis of quantitative traits, to allow for reduced genetic models, dichotomous traits, and gene-environment interactions. We evaluate the performance of the NOIA statistical models using simulated data and lung cancer data. Methods: The NOIA statistical models are developed for additive, dominant, and recessive genetic models as well as for a binary environmental exposure. Using the Kronecker product rule, a NOIA statistical model is built to model gene-environment interactions. By treating the genotypic values as the logarithm of odds, the NOIA statistical models are extended to the analysis of case-control data. Results: Our simulations showed that power for testing associations while allowing for interaction using the NOIA statistical model is much higher than using functional models for most of the scenarios we simulated. When applied to lung cancer data, much smaller p values were obtained using the NOIA statistical model for either the main effects or the SNP-smoking interactions for some of the SNPs tested. Conclusion: The NOIA statistical models are usually more powerful than the functional models in detecting main effects and interaction effects for both quantitative traits and binary traits. Copyright (C) 2012 S. Karger AG, Basel
dc.format.extent17 p.
dc.format.mimetypeapplication/pdf
dc.identifier.pmid22889990
dc.identifier.urihttps://hdl.handle.net/2445/126563
dc.language.isoeng
dc.publisherKarger
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1159/000339906
dc.relation.ispartofHuman Heredity, 2012, vol. 73, num. 4, p. 185-194
dc.relation.urihttps://doi.org/10.1159/000339906
dc.rights(c) Karger, 2012
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))
dc.subject.classificationCàncer de pulmó
dc.subject.classificationInteracció cel·lular
dc.subject.otherLung cancer
dc.subject.otherCell interaction
dc.titleNatural and Orthogonal Interaction framework for modeling gene-environment interactions with application to lung cancer
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
MaJZ.pdf
Mida:
661.77 KB
Format:
Adobe Portable Document Format