Machine Learning Prediction of Comorbid Substance Use Disorders among People with Bipolar Disorder

dc.contributor.authorOliva, Vincenzo
dc.contributor.authorDe Prisco, Michele
dc.contributor.authorPons-Cabrera, Maria Teresa
dc.contributor.authorGuzmán, Pablo
dc.contributor.authorAnmella, Gerard
dc.contributor.authorHidalgo Mazzei, Diego
dc.contributor.authorGrande i Fullana, Iria
dc.contributor.authorFanelli, Giuseppe
dc.contributor.authorFabbri, Chiara
dc.contributor.authorSerretti, Alessandro
dc.contributor.authorFornaro, Michele
dc.contributor.authorIasevoli, Felice
dc.contributor.authorDe Bartolomeis, Andrea
dc.contributor.authorMurru, Andrea
dc.contributor.authorVieta i Pascual, Eduard, 1963-
dc.contributor.authorFico, Giovanna
dc.date.accessioned2023-03-23T13:25:05Z
dc.date.available2023-03-23T13:25:05Z
dc.date.issued2022-07-06
dc.date.updated2023-03-23T13:25:06Z
dc.description.abstractSubstance use disorder (SUD) is a common comorbidity in individuals with bipolar disorder (BD), and it is associated with a severe course of illness, making early identification of the risk factors for SUD in BD warranted. We aimed to identify, through machine-learning models, the factors associated with different types of SUD in BD. We recruited 508 individuals with BD from a specialized unit. Lifetime SUDs were defined according to the DSM criteria. Random forest (RF) models were trained to identify the presence of (i) any (SUD) in the total sample, (ii) alcohol use disorder (AUD) in the total sample, (iii) AUD co-occurrence with at least another SUD in the total sample (AUD+SUD), and (iv) any other SUD among BD patients with AUD. Relevant variables selected by the RFs were considered as independent variables in multiple logistic regressions to predict SUDs, adjusting for relevant covariates. AUD+SUD could be predicted in BD at an individual level with a sensitivity of 75% and a specificity of 75%. The presence of AUD+SUD was positively associated with having hypomania as the first affective episode (OR = 4.34 95% CI = 1.42-13.31), and the presence of hetero-aggressive behavior (OR = 3.15 95% CI = 1.48-6.74). Machine-learning models might be useful instruments to predict the risk of SUD in BD, but their efficacy is limited when considering socio-demographic or clinical factors alone.
dc.format.extent13 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec724241
dc.identifier.issn2077-0383
dc.identifier.pmid35887699
dc.identifier.urihttps://hdl.handle.net/2445/195865
dc.language.isoeng
dc.publisherMDPI
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/jcm11143935
dc.relation.ispartofJournal of Clinical Medicine, 2022, vol. 11, num. 14, p. 3935
dc.relation.urihttps://doi.org/10.3390/jcm11143935
dc.rightscc-by (c) Oliva, Vincenzo et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Medicina)
dc.subject.classificationAlcoholisme
dc.subject.classificationTrastorn bipolar
dc.subject.classificationCànnabis
dc.subject.classificationDrogoaddicció
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationAbús de substàncies
dc.subject.otherAlcoholism
dc.subject.otherManic-depressive illness
dc.subject.otherCannabis
dc.subject.otherDrug addiction
dc.subject.otherMachine learning
dc.subject.otherSubstance abuse
dc.titleMachine Learning Prediction of Comorbid Substance Use Disorders among People with Bipolar Disorder
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
724241.pdf
Mida:
794.74 KB
Format:
Adobe Portable Document Format