Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/172803

Time series features and machine learning forecasts

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

In this study we combine the results of two independent analyses to position Spanish regions according to both the characteristics of the time series of international tourist arrivals and the accuracy of predictions of arrivals at the regional level. We apply a seasonal-trend decomposition procedure based on non-parametric regression to isolate the different components of the series and calculate the main time series features. Predictions are generated with several machine learning models in a recursive multi-step-ahead forecasting experiment. Finally, we summarize all the information from the two previous experiments using categorical principal component analysis. By overlapping the distribution of the regions and the component loadings of each variable along both dimensions, we observe that entropy and dispersion show an inverse relation with forecast accuracy, but the interactions between the rest of the features and accuracy are heavily dependent on the forecast horizon. On this evidence, we conclude that in order to increase forecast accuracy of tourist arrivals at the regional level, model selection should be region-specific and based on the forecast horizon.

Citació

Citació

CLAVERÍA GONZÁLEZ, Óscar, MONTE MORENO, Enric, TORRA PORRAS, Salvador. Time series features and machine learning forecasts. _Tourism Analysis_. 2020. Vol. 25, núm. 4, pàgs. 463-472. [consulta: 21 de gener de 2026]. ISSN: 1083-5423. [Disponible a: https://hdl.handle.net/2445/172803]

Exportar metadades

JSON - METS

Compartir registre