Time series features and machine learning forecasts

dc.contributor.authorClavería González, Óscar
dc.contributor.authorMonte Moreno, Enric
dc.contributor.authorTorra Porras, Salvador
dc.date.accessioned2020-12-16T14:29:15Z
dc.date.available2020-12-16T14:29:15Z
dc.date.issued2020-12-07
dc.date.updated2020-12-16T14:29:15Z
dc.description.abstractIn this study we combine the results of two independent analyses to position Spanish regions according to both the characteristics of the time series of international tourist arrivals and the accuracy of predictions of arrivals at the regional level. We apply a seasonal-trend decomposition procedure based on non-parametric regression to isolate the different components of the series and calculate the main time series features. Predictions are generated with several machine learning models in a recursive multi-step-ahead forecasting experiment. Finally, we summarize all the information from the two previous experiments using categorical principal component analysis. By overlapping the distribution of the regions and the component loadings of each variable along both dimensions, we observe that entropy and dispersion show an inverse relation with forecast accuracy, but the interactions between the rest of the features and accuracy are heavily dependent on the forecast horizon. On this evidence, we conclude that in order to increase forecast accuracy of tourist arrivals at the regional level, model selection should be region-specific and based on the forecast horizon.
dc.format.extent10 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec703369
dc.identifier.issn1083-5423
dc.identifier.urihttps://hdl.handle.net/2445/172803
dc.language.isoeng
dc.publisherCognizant Communication Corporation
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3727/108354220X16002732379690
dc.relation.ispartofTourism Analysis, 2020, vol. 25, num. 4, p. 463-472
dc.relation.urihttps://doi.org/10.3727/108354220X16002732379690
dc.rights(c) Cognizant Communication Corporation, 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Econometria, Estadística i Economia Aplicada)
dc.subject.classificationAnàlisi de sèries temporals
dc.subject.classificationAprenentatge automàtic
dc.subject.otherTime-series analysis
dc.subject.otherMachine learning
dc.titleTime series features and machine learning forecasts
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
703369.pdf
Mida:
556.79 KB
Format:
Adobe Portable Document Format