Elliptic curves and a theorem of Gauss

dc.contributor.advisorSoto Ballesteros, Eduard
dc.contributor.authorKaruk, Andriana
dc.date.accessioned2019-09-17T09:16:53Z
dc.date.available2019-09-17T09:16:53Z
dc.date.issued2019-01-18
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2019, Director: Eduardo Soto Ballesterosca
dc.description.abstract[en] Just like in life, in mathematics many times we find ourselves seeking for the unknown as are the solutions of an equation. In our case instead of focusing on the solutions we would rather know how many options there are, and so how many solutions we can have in a given equation. The aim of this work is to study some of the properties of elliptic curves, as well as some additional theory related to the p-adic numbers and idèles. Moreover, we will see how a perfect combination of it all can helps to find out how many solutions there are of an elliptic curve over a finite field with some additional conditions.ca
dc.format.extent53 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/140141
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Andriana Karuk, 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationCorbes el·líptiquesca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationNombres p-àdicsca
dc.subject.classificationSèries de Dirichletca
dc.subject.classificationFuncions zetaca
dc.subject.otherElliptic curvesen
dc.subject.otherBachelor's theses
dc.subject.otherp-adic numbersen
dc.subject.otherDirichlet seriesen
dc.subject.otherZeta functionsen
dc.titleElliptic curves and a theorem of Gaussca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
510.48 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria