Carregant...
Miniatura

Tipus de document

Document de treball

Data de publicació

Llicència de publicació

cc-by-nc-nd, (c) Clavería González et al., 2017
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/106074

Regional tourism demand forecasting with machine learning models : Gaussian process regression vs. neural network models in a multiple-input multiple-output setting

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

This study presents a multiple-input multiple-output (MIMO) approach for multi-step-ahead time series prediction with a Gaussian process regression (GPR) model. We assess the forecasting performance of the GPR model with respect to several neural network architectures. The MIMO setting allows modelling the cross-correlations between all regions simultaneously. We find that the radial basis function (RBF) network outperforms the GPR model, especially for long-term forecast horizons. As the memory of the models increases, the forecasting performance of the GPR improves, suggesting the convenience of designing a model selection criteria in order to estimate the optimal number of lags used for concatenation

Matèries (anglès)

Citació

Citació

CLAVERÍA GONZÁLEZ, Óscar, MONTE MORENO, Enric, TORRA PORRAS, Salvador. Regional tourism demand forecasting with machine learning models : Gaussian process regression vs. neural network models in a multiple-input multiple-output setting. _IREA – Working Papers_. 2017. Vol.  IR17/01. [consulta: 24 de gener de 2026]. ISSN: 2014-1254. [Disponible a: https://hdl.handle.net/2445/106074]

Exportar metadades

JSON - METS

Compartir registre