Regional tourism demand forecasting with machine learning models : Gaussian process regression vs. neural network models in a multiple-input multiple-output setting

dc.contributor.authorClavería González, Óscar
dc.contributor.authorMonte Moreno, Enric
dc.contributor.authorTorra Porras, Salvador
dc.date.accessioned2017-01-25T12:54:46Z
dc.date.available2017-01-25T12:54:46Z
dc.date.issued2017
dc.date.updated2017-01-25T12:54:46Z
dc.description.abstractThis study presents a multiple-input multiple-output (MIMO) approach for multi-step-ahead time series prediction with a Gaussian process regression (GPR) model. We assess the forecasting performance of the GPR model with respect to several neural network architectures. The MIMO setting allows modelling the cross-correlations between all regions simultaneously. We find that the radial basis function (RBF) network outperforms the GPR model, especially for long-term forecast horizons. As the memory of the models increases, the forecasting performance of the GPR improves, suggesting the convenience of designing a model selection criteria in order to estimate the optimal number of lags used for concatenation
dc.format.mimetypeapplication/pdf
dc.identifier.issn2014-1254
dc.identifier.urihttps://hdl.handle.net/2445/106074
dc.language.isoeng
dc.publisherUniversitat de Barcelona. Institut de Recerca en Economia Aplicada Regional i Pública
dc.relation.ispartofIREA – Working Papers, 2017, IR17/01
dc.relation.ispartofAQR – Working Papers, 2017, AQR17/01
dc.relation.ispartofseries[WP E-AQR17/01]
dc.relation.ispartofseries[WP E-IR17/01]
dc.rightscc-by-nc-nd, (c) Clavería González et al., 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/
dc.sourceDocuments de treball (Institut de Recerca en Economia Aplicada Regional i Pública (IREA))
dc.subject.classificationPrevisió econòmica
dc.subject.classificationTurisme
dc.subject.otherEconomic forecasting
dc.subject.otherTourism
dc.titleRegional tourism demand forecasting with machine learning models : Gaussian process regression vs. neural network models in a multiple-input multiple-output setting
dc.typeinfo:eu-repo/semantics/workingPaper

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
IR17-001_Claveria_RegionalTourism.pdf
Mida:
1.23 MB
Format:
Adobe Portable Document Format