Regional tourism demand forecasting with machine learning models : Gaussian process regression vs. neural network models in a multiple-input multiple-output setting
| dc.contributor.author | Clavería González, Óscar | |
| dc.contributor.author | Monte Moreno, Enric | |
| dc.contributor.author | Torra Porras, Salvador | |
| dc.date.accessioned | 2017-01-25T12:54:46Z | |
| dc.date.available | 2017-01-25T12:54:46Z | |
| dc.date.issued | 2017 | |
| dc.date.updated | 2017-01-25T12:54:46Z | |
| dc.description.abstract | This study presents a multiple-input multiple-output (MIMO) approach for multi-step-ahead time series prediction with a Gaussian process regression (GPR) model. We assess the forecasting performance of the GPR model with respect to several neural network architectures. The MIMO setting allows modelling the cross-correlations between all regions simultaneously. We find that the radial basis function (RBF) network outperforms the GPR model, especially for long-term forecast horizons. As the memory of the models increases, the forecasting performance of the GPR improves, suggesting the convenience of designing a model selection criteria in order to estimate the optimal number of lags used for concatenation | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.issn | 2014-1254 | |
| dc.identifier.uri | https://hdl.handle.net/2445/106074 | |
| dc.language.iso | eng | |
| dc.publisher | Universitat de Barcelona. Institut de Recerca en Economia Aplicada Regional i Pública | |
| dc.relation.ispartof | IREA – Working Papers, 2017, IR17/01 | |
| dc.relation.ispartof | AQR – Working Papers, 2017, AQR17/01 | |
| dc.relation.ispartofseries | [WP E-AQR17/01] | |
| dc.relation.ispartofseries | [WP E-IR17/01] | |
| dc.rights | cc-by-nc-nd, (c) Clavería González et al., 2017 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/ | |
| dc.source | Documents de treball (Institut de Recerca en Economia Aplicada Regional i Pública (IREA)) | |
| dc.subject.classification | Previsió econòmica | |
| dc.subject.classification | Turisme | |
| dc.subject.other | Economic forecasting | |
| dc.subject.other | Tourism | |
| dc.title | Regional tourism demand forecasting with machine learning models : Gaussian process regression vs. neural network models in a multiple-input multiple-output setting | |
| dc.type | info:eu-repo/semantics/workingPaper |
Fitxers
Paquet original
1 - 1 de 1
Carregant...
- Nom:
- IR17-001_Claveria_RegionalTourism.pdf
- Mida:
- 1.23 MB
- Format:
- Adobe Portable Document Format