The isometry group of semi-Riemannian manifolds

dc.contributor.advisorMundet i Riera, Ignasi
dc.contributor.authorLlorens Giralt, Quim
dc.date.accessioned2019-09-18T08:34:10Z
dc.date.available2019-09-18T08:34:10Z
dc.date.issued2019-01-18
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2019, Director: Ignasi Mundet i Rieraca
dc.description.abstract[en] This work presents two important subjects of modern mathematics, Lie Groups and semi-Riemannian Geometry, and shows a beautiful theorem that arises as a combination of both matters: the isometry group of a semi-Riemannian manifold is a Lie group. The structure of the proof presented is as follows. First, we introduce a theorem by Palais [1], which gives a sufficient condition for a group G of diffeomorphisms acting on a smooth manifold M to be a Lie group: that the set of all vector fields on M which generate global 1-parameters subgroups of G generates a finite-dimensional Lie algebra. Then we show that this result can be applied to the isometry group of semi-Riemannian manifolds, by proving that the set of all complete Killing vector fields generates a finite-dimensional Lie algebra.ca
dc.format.extent65 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/140379
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Quim Llorens Giralt, 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationGrups de Lieca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationGeometria de Riemannca
dc.subject.classificationGeometria diferencial globalca
dc.subject.classificationVarietats diferenciablesca
dc.subject.otherLie groupsen
dc.subject.otherBachelor's theses
dc.subject.otherRiemannian geometryen
dc.subject.otherGlobal differential geometryen
dc.subject.otherDifferentiable manifoldsen
dc.titleThe isometry group of semi-Riemannian manifoldsca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
Llorens_Giralt_Quim_TFG.pdf
Mida:
434.19 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria