Automatic Machine Learning for Insurance: H2O Experiment

dc.contributor.advisorTorra Porras, Salvador
dc.contributor.authorValle Nofuentes, Samuel
dc.date.accessioned2021-06-29T21:02:42Z
dc.date.available2021-06-29T21:02:42Z
dc.date.issued2021
dc.descriptionTreballs Finals del Màster de Ciències Actuarials i Financeres, Facultat d'Economia i Empresa, Universitat de Barcelona, Curs: 2020-2021, Tutor: Dr. Salvador Torra Porrasca
dc.description.abstractThis thesis provides an introduction of machine learning (ML), shows the implication that ML has on the insurance sector and takes a special consideration to the H2O ensemble modelling approach for the insurance claim fraud detection binary classification. The aim of this thesis is to study the H2O Automatic ML potential and compare the results generated with traditional algorithms such as lineal perceptron, Logistic Regression, multilayer perceptron, support vector machine and decision tree. Using H2O web interface or R programming, not only the most efficient ML algorithms are obtained with no effort but also provide better modelling metrics than traditional methods.ca
dc.format.extent80 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/178720
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Valle Nofuentes, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Ciències Actuarials i Financeres (CAF)
dc.subject.classificationAprenentatge automàticcat
dc.subject.classificationCompanyies d'assegurancescat
dc.subject.classificationSistema binari (Matemàtica)cat
dc.subject.classificationTreballs de fi de màstercat
dc.subject.otherMachine learningeng
dc.subject.otherInsurance companieseng
dc.subject.otherBinary system (Mathematics)eng
dc.subject.otherMaster's theseseng
dc.titleAutomatic Machine Learning for Insurance: H2O Experimentca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
TFM-CAF_ValleNofuentes_2021.pdf
Mida:
3.01 MB
Format:
Adobe Portable Document Format
Descripció: