El Dipòsit Digital ha actualitzat el programari. Contacteu amb dipositdigital@ub.edu per informar de qualsevol incidència.

 
Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/179838

Prediction of n-octanol/water partition coefficients and acidity constants (pKa) in the SAMPL7 blind challenge with the IEFPCM-MST model

Títol de la revista

ISSN de la revista

Títol del volum

Resum

Within the scope of SAMPL7 challenge for predicting physical properties, the Integral Equation Formalism of the Miertus-Scrocco-Tomasi (IEFPCM/MST) continuum solvation model has been used for the blind prediction of n-octanol/water partition coefficients and acidity constants of a set of 22 and 20 sulfonamide-containing compounds, respectively. The log P and pKa were computed using the B3LPYP/6-31G(d) parametrized version of the IEFPCM/MST model. The performance of our method for partition coefficients yielded a root-mean square error of 1.03 (log P units), placing this method among the most accurate theoretical approaches in the comparison with both globally (rank 8th) and physical (rank 2nd) methods. On the other hand, the deviation between predicted and experimental pKa values was 1.32 log units, obtaining the second best-ranked submission. Though this highlights the reliability of the IEFPCM/MST model for predicting the partitioning and the acid dissociation constant of drug-like compounds compound, the results are discussed to identify potential weaknesses and improve the performance of the method.

Descripció

Matèries (anglès)

Citació

Citació

VIAYNA GAZA, Antonio, PINHEIRO, Silvana de souza, CURUTCHET BARAT, Carles e., LUQUE GARRIGA, F. xavier, ZAMORA RAMÍREZ, William j.. Prediction of n-octanol/water partition coefficients and acidity constants (pKa) in the SAMPL7 blind challenge with the IEFPCM-MST model. _Journal of Computer-Aided Molecular Design_. 2021. Vol. 35, núm. 803-811. [consulta: 1 de desembre de 2025]. ISSN: 0920-654X. [Disponible a: https://hdl.handle.net/2445/179838]

Exportar metadades

JSON - METS

Compartir registre