Multidisciplinary Approach to the Transfection of Plasmid DNA by a Nonviral Nanocarrier Based on a Gemini-Bolaamphiphilic Hybrid Lipid

dc.contributor.authorMartínez-Negro, María
dc.contributor.authorGuerrero-Martínez, Andrés
dc.contributor.authorGarcía-Río, Luis
dc.contributor.authorDomènech Cabrera, Òscar
dc.contributor.authorAicart, Emilio
dc.contributor.authorTros de Ilarduya, Conchita
dc.contributor.authorJunquera, Elena
dc.date.accessioned2021-05-27T08:22:08Z
dc.date.available2021-05-27T08:22:08Z
dc.date.issued2018-01-31
dc.date.updated2021-05-27T08:22:08Z
dc.description.abstractA multidisciplinary strategy, including both biochemical and biophysical studies, was proposed here to evaluate the potential of lipid nanoaggregates consisting of a mixture of a gemini-bolaamphiphilic lipid (C6C22C6) and the well-known helper lipid 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) to transfect plasmid DNA into living cells in an efficient and safe way. For that purpose, several experimental techniques were employed, such as zeta potential (phase analysis light scattering methodology), agarose gel electrophoresis (pDNA compaction and pDNA protection assays), small-angle X-ray scattering, cryo-transmission electron microscopy, atomic force microscopy, fluorescence-assisted cell sorting, luminometry, and cytotoxicity assays. The results revealed that the cationic lipid and plasmid offer only 70 and 30% of their nominal positive () and negative charges (), respectively. Upon mixing with DOPE, they form lipoplexes that self-aggregate in typical multilamellar Lα lyotropic liquid-crystal nanostructures with sizes in the range of 100-200 nm and low polydispersities, very suitably fitted to remain in the bloodstream and cross the cell membrane. Interestingly, these nanoaggregates were able to compact, protect (from the degrading effect of DNase I), and transfect two DNA plasmids (pEGFP-C3, encoding the green fluorescent protein, and pCMV-Luc, encoding luciferase) into COS-7 cells, with an efficiency equal or even superior to that of the universal control Lipo2000*, as long as the effective +/- charge ratio was maintained higher than 1 but reasonably close to electroneutrality. Moreover, this transfection process was not cytotoxic because the viability of COS-7 cells remained at high levels, greater than 80%. All of these features make the C6C22C6/DOPE nanosystem an optimal nonviral gene nanocarrier in vitro and a potentially interesting candidate for future in vivo experiments.
dc.format.extent10 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec677535
dc.identifier.issn2470-1343
dc.identifier.pmid30023772
dc.identifier.urihttps://hdl.handle.net/2445/177665
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1021/acsomega.7b01657
dc.relation.ispartofACS Omega , 2018, vol. 3(1), p. 208-217
dc.relation.urihttps://doi.org/10.1021/acsomega.7b01657
dc.rights(c) American Chemical Society, 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://pubs.acs.org/page/policy/authorchoice_termsofuse.html
dc.sourceArticles publicats en revistes (Farmàcia, Tecnologia Farmacèutica i Fisicoquímica)
dc.subject.classificationLípids
dc.subject.classificationProteïnes
dc.subject.classificationNanotecnologia
dc.subject.otherLipids
dc.subject.otherProteins
dc.subject.otherNanotechnology
dc.titleMultidisciplinary Approach to the Transfection of Plasmid DNA by a Nonviral Nanocarrier Based on a Gemini-Bolaamphiphilic Hybrid Lipid
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
677535.pdf
Mida:
6.02 MB
Format:
Adobe Portable Document Format