El teorema de Birkhoff

dc.contributor.advisorGispert Brasó, Joan
dc.contributor.authorOrtega Aguasca, Marc Alexis
dc.date.accessioned2018-05-10T08:17:20Z
dc.date.available2018-05-10T08:17:20Z
dc.date.issued2017-06-28
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2017, Director: Joan Gispert Brasóca
dc.description.abstract[en] Birkhoff’s Theorem states that let K be a class of algebras, then K is an equational class if, only if, K is a variety. To reach this result, is necessary to understand some basic concepts of universal algebra. Varieties, free algebras and identities will be essential to understand the proof of Birkhoff’s Theorem. We study that statement and how to achieve the proof of it. We also study some of the immediate consequeces of Birkhoff’s Theorem in equational logic. Moreover, there is a final section as appendix where we study some properties of lattices.ca
dc.format.extent69 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/122266
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Marc Alexis Ortega Aguasca, 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationÀlgebra universal
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationTeoria dels reticlesca
dc.subject.otherUniversal algebra
dc.subject.otherBachelor's theses
dc.subject.otherLattice theoryen
dc.titleEl teorema de Birkhoffca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
512.58 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria