Families of simple Jacobians with many automorphisms

dc.contributor.authorNaranjo del Val, Juan Carlos
dc.contributor.authorOrtega, Angela
dc.contributor.authorPirola, Gian Pietro
dc.contributor.authorSpelta, Irene
dc.date.accessioned2025-12-11T10:52:50Z
dc.date.available2025-12-11T10:52:50Z
dc.date.issued2025-11
dc.date.updated2025-12-11T10:52:50Z
dc.description.abstractWe study an explicit ( $2 g-1$ )-dimensional family of Jacobian varieties of dimension $\frac{1}{2}(d-1)(g-1)$, arising from quotient curves of unramified cyclic coverings of prime degree $d$ of hyperelliptic curves of genus $g \geqslant 2$. By using a deformation argument, we prove that the generic element of the family is simple. Furthermore, we completely describe their endomorphism algebra, and we show that they admit a rank $\frac{1}{2}(d-1)-1$ group of non-polarized automorphisms. As an application of these results, we prove the generic injectivity of the Prym map for étale cyclic coverings of hyperelliptic curves of odd prime degree under some slight numerical restrictions. This result generalizes in several directions previous results on genus 2 .
dc.format.extent19 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec761445
dc.identifier.issn2214-2584
dc.identifier.urihttps://hdl.handle.net/2445/224822
dc.language.isoeng
dc.publisherFoundation Compositio Mathematica
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.14231/AG-2025-026
dc.relation.ispartofAlgebraic Geometry, 2025, vol. 12, num.6, p. 869-887
dc.relation.urihttps://doi.org/10.14231/AG-2025-026
dc.rightscc-by-nc (c) Naranjo, J.C. et al., 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.classificationFormes de Jacobi
dc.subject.classificationVarietats abelianes
dc.subject.otherJacobi forms
dc.subject.otherAbelian varieties
dc.titleFamilies of simple Jacobians with many automorphisms
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
903290.pdf
Mida:
461.26 KB
Format:
Adobe Portable Document Format