Self-adjoint extensions for quantum physics
| dc.contributor.advisor | Mas Blesa, Albert | |
| dc.contributor.author | Estévez Estudis, Joan | |
| dc.date.accessioned | 2018-04-26T09:44:49Z | |
| dc.date.available | 2018-04-26T09:44:49Z | |
| dc.date.issued | 2017-06-29 | |
| dc.description | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2017, Director: Albert Mas Blesa | ca |
| dc.description.abstract | [en] The main goal of this work is to provide techniques for finding self-adjoint extensions to unbounded operators, widely used in Quantum Physics. For that we use and study the Cayley method, concluding in the existance of a bijection between self-adjoint extensions and isometries between the deficiency subspaces of the Cayley transform. Using this knowledge we briefly parameterise the 1D, 2D and nD cases with possible self-adjoint extensions, and after introducing Sobolev spaces, we perform in more detail the search of self-adjoint extensions of the hamiltonian and laplacian operators. | ca |
| dc.format.extent | 31 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.uri | https://hdl.handle.net/2445/121893 | |
| dc.language.iso | eng | ca |
| dc.rights | cc-by-nc-nd (c) Joan Estévez Estudis, 2017 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es | |
| dc.source | Treballs Finals de Grau (TFG) - Matemàtiques | |
| dc.subject.classification | Teoria d'operadors | |
| dc.subject.classification | Treballs de fi de grau | |
| dc.subject.classification | Espais de Sobolev | ca |
| dc.subject.classification | Teoria quàntica | ca |
| dc.subject.other | Operator theory | |
| dc.subject.other | Bachelor's theses | |
| dc.subject.other | Sobolev spaces | en |
| dc.subject.other | Quantum theory | en |
| dc.title | Self-adjoint extensions for quantum physics | ca |
| dc.type | info:eu-repo/semantics/bachelorThesis | ca |
Fitxers
Paquet original
1 - 1 de 1
Carregant...
- Nom:
- memoria.pdf
- Mida:
- 235.18 KB
- Format:
- Adobe Portable Document Format
- Descripció:
- memòria