Carregant...
Miniatura

Tipus de document

Article

Versió

Versió enviada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/57643

Tourism demand forecasting with neural network models : Different ways of treating information

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

This paper aims to compare the performance of three different artificial neural network techniques for tourist demand forecasting: a multi-layer perceptron, a radial basis function and an Elman network. We find that multi-layer perceptron and radial basis function models outperform Elman networks. We repeated the experiment assuming different topologies regarding the number of lags used for concatenation so as to evaluate the effect of the memory on the forecasting results. We find that for higher memories, the forecasting performance obtained for longer horizons improves, suggesting the importance of increasing the dimensionality for long-term forecasting.

Citació

Citació

CLAVERÍA GONZÁLEZ, Óscar, MONTE MORENO, Enric, TORRA PORRAS, Salvador. Tourism demand forecasting with neural network models : Different ways of treating information. _International Journal of Tourism Research_. 2015. Vol. 17, núm. 5, pàgs. 492-500. [consulta: 20 de gener de 2026]. ISSN: 1099-2340. [Disponible a: https://hdl.handle.net/2445/57643]

Exportar metadades

JSON - METS

Compartir registre