Carregant...
Tipus de document
ArticleVersió
Versió enviadaData de publicació
Tots els drets reservats
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/57643
Tourism demand forecasting with neural network models : Different ways of treating information
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
This paper aims to compare the performance of three different artificial neural network techniques for tourist demand forecasting: a multi-layer perceptron, a radial basis function and an Elman network. We find that multi-layer perceptron and radial basis function models outperform Elman networks. We repeated the experiment assuming different topologies regarding the number of lags used for concatenation so as to evaluate the effect of the memory on the forecasting results. We find that for higher memories, the forecasting performance obtained for longer horizons improves, suggesting the importance of increasing the dimensionality for long-term forecasting.
Matèries (anglès)
Citació
Citació
CLAVERÍA GONZÁLEZ, Óscar, MONTE MORENO, Enric, TORRA PORRAS, Salvador. Tourism demand forecasting with neural network models : Different ways of treating information. _International Journal of Tourism Research_. 2015. Vol. 17, núm. 5, pàgs. 492-500. [consulta: 20 de gener de 2026]. ISSN: 1099-2340. [Disponible a: https://hdl.handle.net/2445/57643]