Tourism demand forecasting with neural network models : Different ways of treating information

dc.contributor.authorClavería González, Óscar
dc.contributor.authorMonte Moreno, Enric
dc.contributor.authorTorra Porras, Salvador
dc.date.accessioned2014-09-26T07:09:24Z
dc.date.available2014-09-26T07:09:24Z
dc.date.issued2015-10
dc.date.updated2014-09-26T07:09:24Z
dc.description.abstractThis paper aims to compare the performance of three different artificial neural network techniques for tourist demand forecasting: a multi-layer perceptron, a radial basis function and an Elman network. We find that multi-layer perceptron and radial basis function models outperform Elman networks. We repeated the experiment assuming different topologies regarding the number of lags used for concatenation so as to evaluate the effect of the memory on the forecasting results. We find that for higher memories, the forecasting performance obtained for longer horizons improves, suggesting the importance of increasing the dimensionality for long-term forecasting.
dc.format.extent9 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec643552
dc.identifier.issn1099-2340
dc.identifier.urihttps://hdl.handle.net/2445/57643
dc.language.isoeng
dc.publisherWiley-Blackwell
dc.relation.isformatofVersió preprint del document publicat a: http://dx.doi.org/10.1002/jtr.2016
dc.relation.ispartofInternational Journal of Tourism Research, 2015, vol.17, num. 5, pgs. 492-500
dc.relation.urihttp://dx.doi.org/10.1002/jtr.2016
dc.rights(c) Wiley-Blackwell, 2014
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Econometria, Estadística i Economia Aplicada)
dc.subject.classificationPrevisió econòmica
dc.subject.classificationTurisme
dc.subject.classificationDesenvolupament econòmic
dc.subject.otherEconomic forecasting
dc.subject.otherTourism
dc.subject.otherEconomic development
dc.titleTourism demand forecasting with neural network models : Different ways of treating information
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/submittedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
Int J of Tour Research (2015) - Vol 17 Issue (5) - pp 492-500.pdf
Mida:
124.36 KB
Format:
Adobe Portable Document Format