La capacitat analı́tica en problemes d’aproximació racional

dc.contributor.advisorMas Blesa, Albert
dc.contributor.authorBanach Cañı́s, Josep
dc.date.accessioned2018-04-17T09:12:44Z
dc.date.available2018-04-17T09:12:44Z
dc.date.issued2017-06-28
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2017, Director: Albert Mas Blesaca
dc.description.abstract[en] This paper studies the relationship, depending on the compact set $K \subset \mathbb{C}$, between the family of continuous functions on $K, \mathcal{C}(K)$, the family of continuous functions on $K$ and analytics on $\overset{\circ}{K}, \mathcal{A}(K)$, the family of uniformly approximable functions on $K$ by rational functions with poles out on $K, \mathcal{R}(K)$, and the family of uniformly approximable functions on $K$ by polynomials, $\mathcal{P}(K)$. We will see that it is easy to characterise $K$ in order to achive $\mathcal{P}(K)=\mathcal{R}(K)$ or $\mathcal{A}(K)=\mathcal{C}(K)$, but it is more complicated to do the same in order to achieve $\mathcal{R}(K)=\mathcal{A}(K)$. In order to see all the possible relationships, we present some new concepts like the Hausdorff measure, content and dimension, the analytic capacity and the continuous analytic capacity. The main part of this essay is focused on the Vitushkin Theorem, which allows us to characterise the compacts $K$, such as $\mathcal{R}(K)=\mathcal{A}(K)$. we present a demostration scheme and the results obtained from it. In addition, we will also state the Inner Boundary Conjecture that provides us with the sufficient condition on $K$ to ensure that $\mathcal{R}(K)=\mathcal{A}(K)$.ca
dc.format.extent36 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/121593
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Josep Banach Cañı́s, 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationFuncions contínues
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationFuncions analítiquesca
dc.subject.classificationFuncions de variables complexesca
dc.subject.otherContinuous functions
dc.subject.otherBachelor's theses
dc.subject.otherAnalytic functionsen
dc.subject.otherFunctions of complex variablesen
dc.titleLa capacitat analı́tica en problemes d’aproximació racionalca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
448.96 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria