La dinàmica dels polinomis complexos: The escaping set

dc.contributor.advisorFagella Rabionet, Núria
dc.contributor.authorBlanco Borrás, Rubén
dc.date.accessioned2022-06-02T07:39:11Z
dc.date.available2022-06-02T07:39:11Z
dc.date.issued2022-01-24
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Núria Fagella Rabionetca
dc.description.abstract[en] In this project we study the dynamics of complex polynomials, leading towards an efficient algorithm to draw the relevant fractal objects that appear. First, we begin with a series of preliminary concepts necessary to be able to understand the properties of local and global theory, and then analyze the particular properties of polynomials. From here, we will delve into the quadratic family, specifically the Mandelbrot set. We develop Python code to visualize different sets of complex dynamics and see how the escaping and density algorithms work.ca
dc.format.extent46 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/186227
dc.language.isocatca
dc.rightsmemòria: cc-nc-nd (c) Rubén Blanco Borrás, 2022
dc.rightscodi: GPL (c) Rubén Blanco Borrás, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica
dc.subject.classificationFuncions de variables complexesca
dc.subject.classificationSuperfícies de Riemannca
dc.subject.classificationProgramarica
dc.subject.classificationTreballs de fi de grauca
dc.subject.classificationPolinomisca
dc.subject.classificationFractalsca
dc.subject.otherFunctions of complex variablesen
dc.subject.otherRiemann surfacesen
dc.subject.otherComputer softwareen
dc.subject.otherPolynomialsen
dc.subject.otherFractalsen
dc.subject.otherBachelor's thesesen
dc.titleLa dinàmica dels polinomis complexos: The escaping setca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
codi.zip
Mida:
17.73 KB
Format:
ZIP file
Descripció:
Codi font
Carregant...
Miniatura
Nom:
tfg_blanco_borras_ruben.pdf
Mida:
2.33 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria