Human iPSCs-based modeling unveils SETBP1 as a driver of chromatin rewiring in GATA2 deficiency

dc.contributor.authorPera, Joan
dc.contributor.authorRomero Moya, Damià
dc.contributor.authorTorralba Sales, Eric
dc.contributor.authorAndersson, Rebecca
dc.contributor.authorGarcía Hernández, Violeta
dc.contributor.authorMagallon Mosella, Maria
dc.contributor.authorDistefano, Maximiliano
dc.contributor.authorBerenguer Balaguer, Clara
dc.contributor.authorCastaño, Julio
dc.contributor.authorDe Giorgio, Francesca
dc.contributor.authorQiu, Zhichao
dc.contributor.authorIglesias, Arnau
dc.contributor.authorSpurk, Paulina
dc.contributor.authorMontserrat Vazquez, Sara
dc.contributor.authorPasquali, Lorenzo
dc.contributor.authorLiang, Zhuobin
dc.contributor.authorCatalà, Albert
dc.contributor.authorFlorian, Maria Carolina
dc.contributor.authorWlodarski, Marcin W.
dc.contributor.authorBigas, Anna
dc.contributor.authorMarin Bejar, Oskar
dc.contributor.authorGiorgetti, Alessandra
dc.date.accessioned2025-12-16T09:47:17Z
dc.date.available2025-12-16T09:47:17Z
dc.date.issued2025-11-17
dc.date.updated2025-12-10T13:12:19Z
dc.description.abstractPatients with GATA2 deficiency are predisposed to developing myelodysplastic neoplasms (MDS), which can progress to acute myeloid leukemia. This progression is often associated with cytogenetic and somatic alterations. Mutations in SETBP1 and ASXL1 genes are recurrently observed in GATA2 patients, although their roles remain poorly understood. Here we develop a hiPSC-based system to investigate the impact of SETBP1 and ASXL1 mutations in GATA2 deficiency. Using precise genome editing, we recreate stepwise mutational trajectories observed in GATA2-related MDS. We demonstrate that GATA2 mutation has limited impact on hematopoietic progenitors, while the co-occurrence of SETBP1 or ASXL1 mutations impairs myeloid differentiation. The combination of all three mutations severely depletes myeloid progenitors, recapitulating GATA2-related MDS and highlighting their synergistic interplay. Notably, SETBP1 mutation plays a dominant role in establishing a stable chromatin accessibility landscape, even when co-occurring with ASXL1. Our study establishes an iPSC-based model of GATA2 deficiency, offering new insights into myeloid disease progression and a platform for testing future therapeutic strategies.
dc.format.extent17 p.
dc.format.mimetypeapplication/pdf
dc.identifier.issn2041-1723
dc.identifier.pmid41249190
dc.identifier.urihttps://hdl.handle.net/2445/224965
dc.language.isoeng
dc.publisherSpringer Science and Business Media LLC
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/s41467-025-65806-9
dc.relation.ispartofNature Communications, 2025, vol. 16, 10035
dc.relation.urihttps://doi.org/10.1038/s41467-025-65806-9
dc.rightscc-by (c) Pera, Joan et al., 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.classificationOncogens
dc.subject.classificationHematopoesi
dc.subject.classificationProteïnes supressores de tumors
dc.subject.otherOncogenes
dc.subject.otherHematopoiesis
dc.subject.otherTumor suppressor protein
dc.titleHuman iPSCs-based modeling unveils SETBP1 as a driver of chromatin rewiring in GATA2 deficiency
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
s41467-025-65806-9.pdf
Mida:
1.98 MB
Format:
Adobe Portable Document Format