Magnetotelluric 3D inversion - a recapitulation of two successful workshop on forward and inversion code testing and comparison

dc.contributor.authorMiensopust, Marion P.
dc.contributor.authorQueralt i Capdevila, Pilar
dc.contributor.authorJones, Alan G.
dc.contributor.authorAvdeev, Dmitry
dc.contributor.authorAvdeeva, Anna
dc.contributor.authorBörner, Ralph-Uwe
dc.contributor.authorBosch Ros, David
dc.contributor.authorEgbert, Gary
dc.contributor.authorFarquharson, Colin
dc.contributor.authorFranke-Bönner, Antje
dc.contributor.authorGarcia, Xavier
dc.contributor.authorHan, Nuree
dc.contributor.authorHautot, Sophie
dc.contributor.authorHoltham, Elliot
dc.contributor.authorHübert, Juliane
dc.contributor.authorKhoza, David
dc.contributor.authorKiyan, Duygu
dc.contributor.authorLe Pape, Florian
dc.contributor.authorLedo Fernández, Juanjo
dc.contributor.authorLee, Tae Jong
dc.contributor.authorMackie, Randall
dc.contributor.authorMartí i Castells, Anna
dc.contributor.authorMeqbel, Naser
dc.contributor.authorNewman, Greg
dc.contributor.authorOldenburg, Doug
dc.contributor.authorRosell Novel, Oriol
dc.contributor.authorSasaki, Yutaka
dc.contributor.authorSiripunvaraporn, Weerachai
dc.contributor.authorTarits, Pascal
dc.contributor.authorVozar, Jan
dc.date.accessioned2020-05-21T07:25:29Z
dc.date.available2020-05-21T07:25:29Z
dc.date.issued2013
dc.date.updated2020-05-21T07:25:30Z
dc.description.abstractOver the last half decade the need for, and importance of, three-dimensional (3-D) modelling of magnetotelluric (MT) data have increased dramatically and various 3-D forward and inversion codes are in use and some have become commonly available. Comparison of forward responses and inversion results is an important step for code testing and validation prior to 'production' use. The various codes use different mathematical approximations to the problem (finite differences, finite elements or integral equations), various orientations of the coordinate system, different sign conventions for the time dependence and various inversion strategies. Additionally, the obtained results are dependent on data analysis, selection and correction as well as on the chosen mesh, inversion parameters and regularization adopted, and therefore, a careful and knowledge-based use of the codes is essential. In 2008 and 2011, during two workshops at the Dublin Institute for Advanced Studies over 40 people from academia (scientists and students) and industry from around the world met to discuss 3-D MT inversion. These workshops brought together a mix of code writers as well as code users to assess the current status of 3-D modelling, to compare the results of different codes, and to discuss and think about future improvements and new aims in 3-D modelling. To test the numerical forward solutions, two 3-D models were designed to compare the responses obtained by different codes and/or users. Furthermore, inversion results of these two data sets and two additional data sets obtained from unknown models (secret models) were also compared. In this manuscript the test models and data sets are described (supplementary files are available) and comparisons of the results are shown. Details regarding the used data, forward and inversion parameters as well as computational power are summarized for each case, and the main discussion points of the workshops are reviewed. In general, the responses obtained from the various forward models are comfortingly very similar, and discrepancies are mainly related to the adopted mesh. For the inversions, the results show how the inversion outcome is affected by distortion and the choice of errors, as well as by the completeness of the data set. We hope that these compilations will become useful not only for those that were involved in the workshops, but for the entire MT community and also the broader geoscience community who may be interested in the resolution offered by MT.
dc.format.extent23 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec614393
dc.identifier.issn0956-540X
dc.identifier.urihttps://hdl.handle.net/2445/161799
dc.language.isoeng
dc.publisherRoyal Astronomical Society
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1093/gji/ggt066
dc.relation.ispartofGeophysical Journal International, 2013, vol. 193, num. 3, p. 1216-1238
dc.relation.urihttps://doi.org/10.1093/gji/ggt066
dc.rights(c) Miensopust, M.P. et al., 2013
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Dinàmica de la Terra i l'Oceà)
dc.subject.classificationGeomagnetisme
dc.subject.classificationProspecció magnetotel·lúrica
dc.subject.classificationProspecció geofísica
dc.subject.otherGeomagnetism
dc.subject.otherMagnetotelluric prospecting
dc.subject.otherGeophysical exploration
dc.titleMagnetotelluric 3D inversion - a recapitulation of two successful workshop on forward and inversion code testing and comparison
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
614393.pdf
Mida:
8.2 MB
Format:
Adobe Portable Document Format