Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

memòria: cc-nc-nd (c) Sara Bardají Serra, 2022
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/186181

Learning contextual information via deep learning

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

[en] During the last few years, deep learning has become one of the most attractive fields of artificial intelligence, with the use of artificial neural networks at its core. In this project we propose several neural networks architectures for the context learning methodology. The main goal of this project is to verify if these methodologies might work on medical images by first testing them on simpler datasets. We propose two different approaches, one consisting of a convolutional architecture and the other being a recurrent neural network. Whilst the first approach provided grate results with the first datasets we used, it proved to be insufficient as the complexity of the dataset increased. The recurrent architecture provided successful results when working with more complex datasets. This thesis provides a general overview of neural networks and explains the different steps taken to reach the proposed models.

Descripció

Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Santi Seguí Mesquida i Pere Gilabert Roca

Citació

Citació

BARDAJÍ SERRA, Sara. Learning contextual information via deep learning. [consulta: 22 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/186181]

Exportar metadades

JSON - METS

Compartir registre