Learning contextual information via deep learning

dc.contributor.advisorSeguí Mesquida, Santi
dc.contributor.advisorGilabert Roca, Pere
dc.contributor.authorBardají Serra, Sara
dc.date.accessioned2022-06-01T10:29:51Z
dc.date.available2022-06-01T10:29:51Z
dc.date.issued2022-01-22
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Santi Seguí Mesquida i Pere Gilabert Rocaca
dc.description.abstract[en] During the last few years, deep learning has become one of the most attractive fields of artificial intelligence, with the use of artificial neural networks at its core. In this project we propose several neural networks architectures for the context learning methodology. The main goal of this project is to verify if these methodologies might work on medical images by first testing them on simpler datasets. We propose two different approaches, one consisting of a convolutional architecture and the other being a recurrent neural network. Whilst the first approach provided grate results with the first datasets we used, it proved to be insufficient as the complexity of the dataset increased. The recurrent architecture provided successful results when working with more complex datasets. This thesis provides a general overview of neural networks and explains the different steps taken to reach the proposed models.ca
dc.format.extent55 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/186181
dc.language.isoengca
dc.rightsmemòria: cc-nc-nd (c) Sara Bardají Serra, 2022
dc.rightscodi: GPL (c) Sara Bardají Serra, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica
dc.subject.classificationAprenentatge automàticca
dc.subject.classificationXarxes neuronals convolucionalsca
dc.subject.classificationProgramarica
dc.subject.classificationTreballs de fi de grauca
dc.subject.classificationXarxes neuronals (Informàtica)ca
dc.subject.classificationImatges mèdiquesca
dc.subject.otherMachine learningen
dc.subject.otherConvolutional neural networksen
dc.subject.otherComputer softwareen
dc.subject.otherNeural networks (Computer science)en
dc.subject.otherImaging systems in medicineen
dc.subject.otherBachelor's thesesen
dc.titleLearning contextual information via deep learningca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
codi.zip
Mida:
48.18 KB
Format:
ZIP file
Descripció:
Codi font
Carregant...
Miniatura
Nom:
tfg_bardaji_serra_sara.pdf
Mida:
4.81 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria