Carregant...
Tipus de document
Document de treballData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/61327
Multiple-input multiple-output vs. single-input single-output neural network forecasting
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
This study attempts to improve the forecasting accuracy of tourism demand by using the existing common trends in tourist arrivals form all visitor markets to a specific destination in a multiple-input multiple-output (MIMO) structure. While most tourism forecasting research focuses on univariate methods, we compare the performance of three different Artificial Neural Networks in a multivariate setting that takes into account the correlations in the evolution of inbound international tourism demand to Catalonia (Spain). We find that the MIMO approach does not outperform the forecasting accuracy of the networks when applied country by country, but it significantly improves the forecasting performance for total tourist arrivals. When comparing the forecast accuracy of the different models, we find that radial basis function networks outperform multilayer-perceptron and Elman networks.
Matèries (anglès)
Citació
Citació
CLAVERÍA GONZÁLEZ, Óscar, MONTE MORENO, Enric, TORRA PORRAS, Salvador. Multiple-input multiple-output vs. single-input single-output neural network forecasting. _IREA – Working Papers_. 2015. Vol. IR15/02. [consulta: 21 de gener de 2026]. ISSN: 2014-1254. [Disponible a: https://hdl.handle.net/2445/61327]