Carregant...
Miniatura

Tipus de document

Document de treball

Data de publicació

Llicència de publicació

cc-by-nc-nd, (c) Clavería et al., 2015
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/61327

Multiple-input multiple-output vs. single-input single-output neural network forecasting

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

This study attempts to improve the forecasting accuracy of tourism demand by using the existing common trends in tourist arrivals form all visitor markets to a specific destination in a multiple-input multiple-output (MIMO) structure. While most tourism forecasting research focuses on univariate methods, we compare the performance of three different Artificial Neural Networks in a multivariate setting that takes into account the correlations in the evolution of inbound international tourism demand to Catalonia (Spain). We find that the MIMO approach does not outperform the forecasting accuracy of the networks when applied country by country, but it significantly improves the forecasting performance for total tourist arrivals. When comparing the forecast accuracy of the different models, we find that radial basis function networks outperform multilayer-perceptron and Elman networks.

Citació

Citació

CLAVERÍA GONZÁLEZ, Óscar, MONTE MORENO, Enric, TORRA PORRAS, Salvador. Multiple-input  multiple-output  vs. single-input  single-output neural network forecasting. _IREA – Working Papers_. 2015. Vol.  IR15/02. [consulta: 21 de gener de 2026]. ISSN: 2014-1254. [Disponible a: https://hdl.handle.net/2445/61327]

Exportar metadades

JSON - METS

Compartir registre